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ABSTRACT

Aims. A close companion of ζ Orionis A was found in 2000 with the Navy Precision Optical Interferometer (NPOI), and shown to
be a physical companion. Because the primary is a supergiant of type O, for which dynamical mass measurements are very rare, the
companion was observed with NPOI over the full 7-year orbit. Our aim was to determine the dynamical mass of a supergiant that, due
to the physical separation of more than 10 AU between the components, cannot have undergone mass exchange with the companion.
Methods. The interferometric observations allow measuring the relative positions of the binary components and their relative bright-
ness. The data collected over the full orbital period allows all seven orbital elements to be determined. In addition to the interferometric
observations, we analyzed archival spectra obtained at the Calar Alto, Haute Provence, Cerro Armazones, and La Silla observatories,
as well as new spectra obtained at the VLT on Cerro Paranal. In the high-resolution spectra we identified a few lines that can be asso-
ciated exclusively to one or the other component for the measurement of the radial velocities of both. The combination of astrometry
and spectroscopy then yields the stellar masses and the distance to the binary star.
Results. The resulting masses for components Aa of 14.0 ± 2.2 M� and Ab of 7.4 ± 1.1 M� are low compared to theoretical expecta-
tions, with a distance of 294 ± 21 pc which is smaller than a photometric distance estimate of 387 ± 54 pc based on the spectral type
B0III of the B component. If the latter (because it is also consistent with the distance to the Orion OB1 association) is adopted, the
mass of the secondary component Ab of 14±3 M� would agree with classifying a star of type B0.5IV. It is fainter than the primary by
about 2.2± 0.1 magnitudes in the visual. The primary mass is then determined to be 33± 10 M�. The possible reasons for the distance
discrepancy are most likely related to physical effects, such as small systematic errors in the radial velocities due to stellar winds.

Key words. techniques: interferometric – stars: fundamental parameters – supergiants – stars: individual: ζ Orionis A –
binaries: spectroscopic

1. Introduction

Studies of double-lined eclipsing binaries have been very suc-
cessful in measuring masses of stars on the main sequence
(Torres et al. 2010) with high enough accuracies to challenge
stellar evolution models. The latter have held up well even for
O-type stars (Gies 2003). However, even though O-type super-
giants have also been found in eclipsing binaries, the observa-
tional selection bias that favors closer systems over wider ones,
would indicate a high probability that the components in these
systems have interacted and therefore would not be described by
single-star evolution models.

High-angular resolution techniques based on optical long
baseline interferometers have overcome this limitation and have
contributed significantly to the stock of precise stellar mass mea-
surements. Here we report on our attempt to make the first such
determination for a supergiant in a detached system, excluding
any mass transfer.

Hummel et al. (2000) found a companion 40 mas from the
O9.5 Ib component A (HR 1948) of the wide double ζ Orionis

� Based in part on observations collected at the European Southern
Observatory, Chile (Prop. No. 076.C-0431, 080.A-9021, 083.D-0589,
285.D-5042).

AB, and detected orbital motion over the course of a few months.
Using the Navy Precision Optical Interferometer(Armstrong
et al. 1998), we continued observations over the 7.3 year orbital
period in order to determine the orbital elements. Component B
(HR 1949) showed slow motion relative to A by increasing the
position angle 9.6 degrees over the past century, and by decreas-
ing the separation by 116 mas at the same time. It is currently
2.40 arcsec away from the primary at a position angle of 165 de-
grees (Washington Double Star Catalog). We interpret this as
orbital motion in a common proper motion physical pair.

A detailed spectroscopic study of ζ Orionis A was carried out
by Bouret et al. (2008), who determined an effective temperature
of Teff = 29 500 ± 1000 K for component Aa (the secondary,
Ab, was not taken into account) and log g = 3.25 ± 0.10 with
normal abundances. The rotational velocity (of the primary) was
determined to be v sin i = 110±10 km s−1, and the rotation period
to seven days, implying an inclination of the rotation axis of 40◦.

Meanwhile, we were able to identify photospheric lines of
both the primary and secondary components in archival spectra
obtained with HEROS and FEROS at La Silla, Chile, with BESO
at Cerro Armazones, Chile, FOCES at Calar Alto, Spain, and
new observations with UVES at the VLT. This allowed us to
determine a dynamical mass and distance to ζ Orionis A.
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Table 1. Observation and result log.

Feb. 13 1998.12 CEW 42.1 276.3 0.60 0.13 175
Feb. 14 1998.12 CEW 42.1 276.4 0.60 0.13 176
Mar. 03 1998.17 CEW 42.5 275.1 0.58 0.13 175
Mar. 20 1998.21 CEW 43.0 273.9 0.58 0.15 176
Nov. 19 1998.88 EW 46.7 260.0 2.40 0.11 163
Nov. 26 1998.90 CEW 46.8 258.8 0.56 0.16 178
Feb. 13 1999.12 CW 47.3 254.6 2.20 0.19 155
Feb. 17 1999.13 CW 47.2 254.2 2.13 0.18 155
Feb. 18 1999.13 CW 47.2 254.0 1.65 0.20 153
Feb. 23 1999.14 CEW 47.0 253.8 0.58 0.14 176
Mar. 29 1999.24 CEW 47.1 251.7 0.58 0.19 179
Mar. 30 1999.24 CEW 47.1 251.6 0.55 0.16 177
Oct. 18 2000.80 CEW 37.3 214.1 0.64 0.11 177
Jan. 09 2002.02 EWNE2 26.2 154.7 0.25 0.13 146

CWE2W7
Jan. 12 2002.03 EWNE2 26.1 153.8 0.25 0.15 146

CWE2W7
Dec. 20 2002.97 EWNE2 24.5 87.7 0.20 0.15 176

CWE2
Mar. 11 2004.19 CE, CW 23.5 332.2 0.49 0.28 178
Mar. 12 2004.19 CE, CW 23.6 332.5 0.48 0.29 6
Feb. 24 2006.15 CEN 46.4 261.5 0.28 0.15 23

CWE6

Notes. Columns 1 and 2 give the date and Julian year, Col. 3 the sta-
tions (astrometric stations C, E, W, and N, as well as imaging stations
E2, E6, and W7), Cols. 4 and 5 separation (mas) and position angle
(deg), respectively, and Cols. 6 to 8 major and minor axes and position
angle of the uncertainty ellipse for the derived relative position of binary
components.

2. Observations and data reduction

2.1. Interferometry

Observations prior to 2000 were described in Hummel et al.
(2000). While these and the observation in 2000 used the three-
way beam combiner, subsequent observations used the six-way
beam combiner described by Armstrong et al. (1998). In Table 1
we list the dates and stations used (along with astrometric results
described later). For a given combination of stations (“configura-
tion”, per spectrometer), the signals of all baselines thus realized
were decoded and Fourier-transformed to yield complex visibil-
ities as described by Hummel et al. (2003). For the observations
in the years of 2004 and later, fewer than the maximum num-
ber of stations were allowed to illuminate a spectrometer owing
to crosstalk between the fringe signals at different modulation
frequencies.

The data were reduced as described by Hummel et al. (2003).
Additional “incoherent” scans away from the fringe packet were
executed for each star and each station configuration in or-
der to precisely determine the visibility bias. Calibration was
performed using interleaved observations of ε Orionis adopt-
ing a limb-darkened diameter of 0.9 mas (Mozurkewich et al.
1991), for each configuration separately. Calibration uncertain-
ties based on scan-to-scan variations in the calibrator visibility
range from a few percent up to 20%, and in the closure phase
up to a few degrees. Since channel-to-channel variations of the
visibility amplitude spectra are much lower in value, we allowed
the calibration of each spectrum to float during the astrometric
fits rather than applying the larger calibration uncertainties. The
(limb-darkened) diameter of ζ Orionis Aa was determined to be
0.58 mas by Remie & Lamers (1982) based on the infrared flux

Fig. 1. Calibrated (squared) visibility amplitudes plotted versus wave-
length for 2002 Dec 20 on the E-E2(a), E2-W(b), E2-N(c), E-W(d),
E-N(e), and N-W(f) baselines at 7:45 UT. The solid line shows the
model prediction for a fit with component separation ρ = 24.6 mas and
PA θ = 87.7◦. The amplitude of the quasi-sinusoidal amplitude variation
is fit with a magnitude difference Δm = 2.2.

method, and measured to be 0.48± 0.04 mas by Hanbury Brown
et al. (1974) using an intensity interferometer. The latter group
already noticed the presence of a third component in the ζ Ori
AB system, and even predicts a magnitude difference of about
2 mag. However, they state that the stellar diameter derived from
intensity interferometry should be taken as trustworthy for com-
ponent Aa, since the contributions from the additional compo-
nents would be much smaller than the uncertainty. We computed
an additional estimate of the diameter based on a B0I template
SED fit to archival photometry, giving a value of 0.40±0.02 mas.
We therefore adopted a “mean” value of 0.48 mas, but such a di-
ameter is mostly unresolved by our interferometric observations.

As an example, we show visibility spectra of all six base-
lines in a full four-station observation in Fig. 1. The full coverage
of the sinusoidal visibility variation demonstrates that the preci-
sion of the astrometric fits should in fact benefit from a floating
calibration.

We determined the separation, ρ, and position angle, θ, of
the binary components for each night from the visibility data,
starting with estimates derived from images made using standard
phase self-calibration and deconvolution methods (see examples
in Hummel et al. 2000). This procedure enabled unambiguous
identification of the global minimum of χ2 corresponding to the
best fit values of ρ and θ to the visibility data. The astrometric fit
results are also listed in Table 1. The uncertainty ellipses corre-
spond to one-seventh of the synthesized beam, which has been
shown to give realistic estimates of the astrometric accuracy of
NPOI multi-baseline observations. Using the orbit determined
with these measurements (as described below), a simultaneous
fit to all visibility data determined the magnitude difference to
be 2.2 ± 0.1 over the NPOI band width (0.70± 0.15μm) without
significant color changes.

2.2. Spectroscopy

Spectroscopic observations were taken with various echelle in-
struments. In 1995, 1997, and 1998 spectra were obtained with

A52, page 2 of 7



C. A. Hummel et al.: Dynamical mass of Zeta Orionis Aa

the HEROS instrument, attached to ESO telescopes on La Silla.
The HEROS observational campaigns were described by Kaufer
(1998), and the data format and processing in detail by Stahl
et al. (1995). In brevity, HEROS provided spectra with a spec-
tral resolution of R = 20 000 from about 350 to about 870 nm.
For individual spectra a signal-to-noise ratio (S/N) above 100
was aimed for. For ζ Ori, there were 57 spectra taken in 1995
(MJD 49747 to 49804), 16 in 1997 (MJD 50449 to 50457), and
64 in 1998 (MJD 51143 to 51160). For the purpose of this
work, deriving the orbital radial velocity (RV) variations, spectra
within one season have been averaged to increase S/N to almost
1000, and the mean time was taken as epoch.

FEROS data were obtained from the ESO archive. In 2006,
one single spectrum was taken at MJD= 53 738, and in 2009 5
spectra were obtained on MJD= 54 953. FEROS data range from
370 nm to 900 nm with R = 48 000. See Kaufer et al. (1999) for
a more detailed description of the instrument. The combined S/N
for each epoch is between 100 and 200.

A single spectrum was taken in 2001 with FOCES at the
2.2 m telescope of Calar Alto, Spain. The wavelength coverage
ranges from 390 nm to 950 nm, with R ≈ 40 000. Data reduc-
tion was performed using the FOCES data reduction software
by Przybilla (priv. comm.).

Several spectra were recorded over three observing sea-
sons in 2009 and 2010 by the BESO spectrometer (based
on the FEROS design) at the Hexapod 1.5m telescope at
Cerro Armazones, Chile. The wavelength coverage ranges from
370 nm to 860 nm, with R ≈ 48 000.

A few spectra taken in 1995, 1998, and 1999 were found in
the public ELODIE archive1 of the Haute Provence Observatory
(Moultaka et al. 2004), covering the wavelength range of 400 nm
to 680 nm, at R = 42 000.

Finally, UVES spectra have been obtained in the 437+760
setting (Dekker et al. 2000) separately of components A and B,
which were easily resolved. A total of 32 spectra were taken of
ζ Ori A within half an hour and averaged to a combined S/N of
well above 1000. Additionally, five/four (blue/red arm) spectra
of ζ Ori B were taken, with a combined S/N of about 500.

We checked the wavelength calibration to confirm the same
position of the interstellar Ca ii H (3934) and Na i (D1) lines
(5896) in all spectra. The rms variation was 1.0 km s−1 and
1.7 km s−1, respectively. However, these lines are shifted by sev-
eral times the rms in the FOCES spectrum, and the same is true
for the Na D line in all but the last epoch of the ELODIE spec-
tra. The wavelength calibration of these spectra should there-
fore be considered uncertain so they were excluded from further
analysis.

In the spectra all He i lines, as well as He ii 4686, have a
relatively narrow core with varying RV in one direction, while
the line wings are shifted in anti-phase with respect to the cores.
This is the signature of a double-lined (SB2) binary. For some
lines (almost) exclusive formation in the O9.5 component can
be assumed. The best candidates are the He ii lines, typically
not seen in B-type stars (except He ii 4686, which explains why
RVs we derived from single Gaussian profiles fitted to this line
did not show orbital motion). We also noticed systematic off-
sets between lines nearly independent of the orbital phase, such
as an offset of about 5 km s−1 between the He ii lines at 4542
and 4200, which appeared to be due to a slight non-Gaussian
shape of the latter. Such offsets were also noted by Rauw et al.
(2012) in the case of another O-star binary. Therefore, we de-
cided not to use multi-line fits and derived RVs from He ii 4542

1 http://atlas.obs-hp.fr/elodie/

Table 2. Radial velocity measurements.

JD-2 400 000 Phase He ii 4542 O ii 4943 Instrument
49 771.5 0.90 16.7 ± 1.8 50.0 ± 2.8 HEROS
50 454.5 0.15 31.0 ± 2.1 24.2 ± 2.6 HEROS
51 143.5 0.41 35.0 ± 1.7 14.9 ± 3.3 HEROS
52 182.7 0.79 25.8: 33.3: FOCES
53 738.7 0.37 39.6 ± 1.9 12.8 ± 5.0 FEROS
54 501.5 0.66 29.7 ± 2.3 21.7 ± 2.3 FEROS
54 873.6 0.80 23.2 ± 1.6 BESO
54 919.5 0.81 23.9 ± 1.7 BESO
55 170.7 0.91 14.1 ± 1.6 BESO
55 235.5 0.93 20.3 ± 3.0 BESO
55 237.6 0.93 20.4 ± 3.7 BESO
54 954.5 0.83 23.8 ± 1.8 39.0 ± 2.3 FEROS
55 435.9 0.01 20.5 ± 1.8 47.3 ± 3.3 UVES
50 030.7 0.99 19.4: 42.7: ELODIE
51 144.9 0.41 35.3: 8.0: ELODIE
51 533.3 0.55 29.6 ± 2.9 ELODIE

Notes. For the primary, only He ii was used, for the secondary O ii.
Measurements flagged with a : were not used in the final analysis (see
text).

with Gaussian fits to the line. The width of this line was about
3 Å, as expected from the v sin i of 110 km s−1. Theoretical spec-
tra based on model atmospheres (Hubeny & Lanz 1995) show
that this line is basically absent in an early type B dwarf or sub-
giant (Teff = 27 500 K and log g = 4.0). However, Bouret et al.
(2008) note line shape variability with a peak-to-peak maximal
amplitude of 17 km s−1 (in particular He i 4922) on time scales
of the rotational period of the primary related to its magnetic
field modulating the wind.

There are as well very weak and rather narrow lines that are
not expected in the O9 Ib star. These narrow lines are RV vari-
able in the same sense as the cores of stronger lines, i.e. they be-
long to the companion and are indicative of an early type B star.
Again, we fit Gaussian profiles to the O ii 4941 and 4943 lines to
derive the RV of the secondary (as a single parameter in the fit).
The width of these lines was typically 1 Å. Theoretical spec-
tra (Hubeny & Lanz 1995) confirm that these lines are deeper
by a factor of five than the same lines in an O9.7 supergiant
(T = 30 000 K and log(g) = 3.5). Combined with the fact
that the primary lines are rotationally broadened, this choice for
measuring the secondary velocities is justified. The O ii 4907
line was not usable in several spectra, and was therefore not in-
cluded. The results of the Gaussian-fit measurements are given
in Table 2.

We estimated the uncertainty of each RV measurement of the
secondary from their spread when fit to simulated line profiles
designed to have the same noise statistics and residual fit de-
viations from Gaussian profiles as the measured profile (Monte
Carlo method). For the lines of the primary, which had a much
higher S/N, we estimated the level of systematic error related to
profile variations by comparing the Gaussian fit results with RVs
obtained by matching the mirrored profile with itself at about
half of the line depth. The resulting estimate for the lower limit
of the uncertainty related to non-Gaussian profiles of 1.5 km s−1

applicable to all observations of this line was then added in
quadrature to the Monte Carlo uncertainty estimate for each
measurement.
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Fig. 2. SB2 composite spectrum of ζ Ori Aa+Ab. The panel shows
He ii 4542, presumably originating from the primary alone. The three
HEROS and three FEROS spectra are offset in increasing order of time
from the bottom up. As a guide, the RV difference between the bottom
two spectra is 14.3 km s−1.

Table 3. Orbital elements and system parameters.

Orbital period 2687.3 ± 7.0 d
Periastron epoch JD 2 452 734.2 ± 9.0
Periastron long. 24.2 ± 1.2◦
Eccentricity 0.338 ± 0.004
Ascending node 83.8 ± 0.8◦
Inclination 139.3 ± 0.6◦
Semi-major axis 35.9 ± 0.2 mas
Systemic velocity 28.3 ± 0.5 km s−1

Orbital parallax 3.4 ± 0.2 mas
Visual magnitude difference 2.2 ± 0.1
MAa 14.0 ± 2.2 M�
MAb 7.4 ± 1.1 M�
K1 (derived) 10.1 km s−1

K2 (derived) 19.6 km s−1

3. Results and discussion

3.1. Orbital elements and distance

We fit the seven orbital elements, the systemic velocity, and the
stellar masses, to the astrometric positions and RVs. Initial esti-
mates of the elements of the apparent orbit were obtained using
the Thiele-Innes method. Thanks to the high precision of the as-
trometric orbit, the elements in common with the spectroscopic
orbit did not change much after including the RV data. The lat-
ter mostly constrained the mass estimates. The reduced χ2 of

Fig. 3. SB2 composite spectrum of ζ Ori Aa+Ab. The panel shows the
weak O ii 4943 lines from the secondary and the composite He i 4922
line. The three HEROS and three FEROS spectra are offset in increasing
order of time from the bottom up. As a guide, the RV difference between
the bottom two spectra is 25.8 km s−1.

Fig. 4. Orbit of ζ Orionis Ab around Aa (center). The line indicates the
secondary Ab at periastron. A few selected epochs are marked.

the fits was about 0.5 for astrometry and 1.0 for spectroscopy.
No significant offset between the systemic velocities for primary
and secondary was found (at a level of 1 km s−1). The results are
summarized in Table 3, and Figs. 4 and 5 show the fit to the mea-
surements. An orbital parallax of 3.4±0.2 mas was derived, cor-
responding to a distance of d = 294± 21 pc and a distance mod-
ulus of 7.4. ζ Orionis is a member of the Orion OB1 association,
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Fig. 5. Measured RVs of both components. The green (filled) symbols
denote the primary (He ii 4542), the red (open) symbols the secondary
(O ii 4943). Triangles pointing down denote FEROS/HEROS measure-
ments, triangles pointing up denote BESO. Squares denote ELODIE,
and the diamond is for UVES. The dashed lines are for the model based
on the photometric distance (see discussion; the derived velocity semi-
amplitudes are K1 = 11.6 km s−1 and K2 = 26.8 km s−1).

more specifically of the OB1b subgroup which is centered on
the belt stars (Bally 2008). The Orion star forming regions are
typically assumed to be at about 400 pc. Menten et al. (2007) de-
rived a distance of 414±7 pc from VLBA astrometry to the Orion
nebula cluster, confirmed by Kraus et al. (2009), who obtained
an orbital parallax from one of its members. Our measurement
here of ζ Ori comes in low and would indicate a location on the
near side of the association.

Apart from the more general criticism of Hipparcos distances
of O-stars expressed by Schröder et al. (2004), there are reasons
particular to the ζ Ori system to be careful. As an astrometric
binary with a period of less than a decade, and Hipparcos mea-
suring over three years, a five-parameter solution, i.e. without
taking orbital acceleration into account, is probably not suffi-
cient. However, in the new Hipparcos reduction (van Leeuwen
2007), ζ Ori data was solved with five parameters only for a
distance of 225+38

−27 pc. For this reason we discard the Hipparcos
parallax for determining the distance. A distance measurement
to ζ Ori derived from the Ca iiH+K equivalent width, which
gives 297 ± 45 pc (Megier et al. 2009), is potentially problem-
atic, because the short distance makes it sensitive to localized
density fluctuations. Despite the apparent agreement of these re-
sults with our distance estimate, we take an alternative approach
in the following.

The distance can also be estimated photometrically, in par-
ticular since all components contributing to the integrated light
are known now with some certainty. Strömgren photometry was
taken from Hauck & Mermilliod (1998). These data, V = y =
1.75 mag, are measurements of the combined flux, i.e. includ-
ing components Aa, Ab, and B. Worley (1969) lists the mag-
nitude difference between A and B as ΔV(A−B) = 2.08 mag,
Edwards (1976) gives ΔV(A−B) = 2.1 mag, and Murphy (1969)
ΔV(A−B) = 2.2 mag, however referring to older sources from
the first half of the 20th century. In the following, Worley’s
value is used. The magnitude difference between Aa and Ab of
ΔV(Aa−Ab) = 2.2 mag is derived from fitting the interferometric
data. With these values, the individual component magnitudes

Table 4. Stellar parameters for the components of the ζ Ori system
based on the photometric distance.

Parameter Aa Ab B

Sp. type O9.5 Iab B1 IV B0 III
mV [mag] 2.1 4.3 4.0
MV (photometry) [mag] −6.0 −3.9 −4.1a

MV (orbit) [mag] −5.5 −3.3 −3.6
M� [M�] 33 ± 10 14 ± 3 –
R� [R�] 20.0 ± 3.2 7.3 ± 1.0 –

Notes. (a) Adopted (see text).

are VAa = 2.08 mag, VAb = 4.28 mag, and VB = 4.01 mag, while
VAa+Ab = 1.93 mag.

The colour excess is given as E(B − V) = 0.06 by Lee
(1968). Although this excess was derived by assuming a sin-
gle star, since all three stars in the system are well within the
Rayleigh-Jeans tail of their SED, any correction for the presence
of the two B stars would be very small. Since Lee notes that in
the outer areas of Orion, explicitely including the “northwestern
regions”, the extinction would be normal with R � 3.0, the pho-
tometric fluxes were dereddened with the usual RV = 3.1; i.e.,
AV = 0.19 mag.

Component B is well known to be a B0 III star, which is also
confirmed by our spectrum. The B2 III classification by Edwards
(1976) comes from a photometric classification scheme utilizing
the magnitude difference, but assuming the combined magnitude
of the Aa+Ab subsystem is due to component Aa alone. Since
Ab was not known then, this introduced a bias.

Assuming an absolute magnitude for a B0 III star of MV =
−4.12 mag (Loktin & Beshenov 2001; Nieva 2013) and the
above values for VB and AV , the distance modulus becomes
7.94 mag. Taking 0.3 mag as combined uncertainty for the dis-
tance modulus from MV , mV , and AV , the photometric distance to
the ζ Ori system is d = 387± 54 pc, i.e. the photometric parallax
is πphot = 2.6+0.4

−0.3 mas. This value is only marginally consistent
with the orbital parallax.

3.2. Stellar parameters

We note that for the photometric distance the absolute magni-
tudes for components Aa and Ab would point to spectral types
of O9.5 Iab and B0.5 IV, in good agreement with the spectro-
scopic evidence. As the photometric distance is based on a reli-
able spectral classification of a non-supergiant for which recent
calibrations of the absolute magnitude exist Nieva (2013), we
regard the photometric distance as more robust than the orbital
parallax, which is based on rather low velocity amplitudes. We
therefore fit the stellar masses to the combined interferometric
and spectroscopic data under the condition that the results are
consistent with the photometric distance. The results are given
in Table 4. The mass estimates are now significantly higher than
those given in Table 3, but in particular for the secondary to be
more in line with what is expected for a star of its type and lu-
minosity class (Torres et al. 2010). As far as the mass of the
supergiant, no previous dynamical measurements of O-type su-
pergiants exist with periods long enough to exclude a history of
mass exchange.

As shown in in Fig. 5, it appears that the problem lies mostly
with the velocities of the secondary, which were derived from the
O ii 4943 line. As mentioned before, a small contribution of the
primary to this line can be expected based on theoretical atmo-
sphere models, which is why it would be premature to claim that
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Fig. 6. Location of the components (+ symbols) of ζ Orionis A in the
theoretical plane of the HR diagram, based on the photometric parallax
of 2.6 mas and bolometric corrections of −2.84 for the primary and
−2.72 mag for the secondary (Flower 1996). Stellar evolution tracks of
a 25 M� star (solid line) and of a 15 M� star (dashed line) are shown,
and asterisks are used to mark the primary at an age of 6.4 Myr and the
secondary at an age of 7.2 Myr.

the stellar masses derived from the RV curves alone would point
to lower values than expected for the supergiant. Since we do
not have enough very high S/N spectra (such as the UVES spec-
trum) to attempt spectral disentangling (e.g., using FDBinary by
Ilijic et al. 2004), we adopt the results that are consistent with
the photometric distance.

3.3. Evolutionary state

Given the apparent diameter adopted for the primary, we com-
puted a physical radius of 20±3 R� with a parallax π = 2.6 mas,
consistent with this component being a supergiant. The same
value can be derived from the effective temperature and lumi-
nosity (see Table 4).

To determine the (approximate) age of ζ Orionis A, we used
the stellar evolution models computed by Schaller et al. (1992);
Charbonnel et al. (1993); Schaerer et al. (1993); Meynet et al.
(1994) for masses of 15 and 25 times solar, for metallicities of
0.001, 0.004, 0.008, 0.020, and 0.040. For metallicities lower
than solar, models matching the derived luminosity and effective
temperatures are older and place the primary on the hydrogen-
shell burning track following the exhaust of the core hydrogen
supply. However, the secondary is quite a bit older here than the
primary, and these models are therefore invalidated. Using solar
metallicity models, Z = 0.020, we find that at an age of about
7 Myr, the modeled stars match the observed properties reason-
ably well, considering that a model for the mass of the primary
was not available (Fig. 6). Martins et al. (2012) determined a
younger age of 3.6 ± 0.7 Myr based on the combined properties
of ζ Ori A (adopting a mass of 42 M�), using models of rotating
massive stars by Brott et al. (2011).

4. Component B

To our knowledge, this is the first time that a high-quality spec-
trum for component B of the ζ Ori system has been obtained.
The spectrum is that of a very rapidly rotating star, at about
v sin i = 350 km s−1 and a systemic velocity of vsys = 25 km s−1,
the latter consistent with the γ velocity of the Aa+Ab subsys-
tem. The line profiles in the spectrum are highly distorted from
a purely rotationally broadened profile (Fig. 7). Such distortions

Fig. 7. He i 5876 line of ζ Ori B. Apart from being a very rapid rotator,
the pulsational signature is clearly seen. The dotted lines indicate −320
and +380 km s−1.

in early type stars could either be due to abundance patterns on
the stellar surface or due to nonradial pulsation. Abundance pat-
terns are unlikely, since the distortion has a similar shape in all
lines, regardless of species. To produce such a shape, nonradial
pulsation has to be a high-order p-mode type, meaning ζ Ori B
is a βCephei star without a radial mode, where the photometric
variations mostly cancel across the surface. According to Fig. 3
of Telting et al. (2006), such a line profile variation can be found
in roughly half of the early B type stars with v sin i > 250 km s−1.
Other examples for such rapidly rotating βCephei stars include
πAqr (Peters & Gies 2005) and δSco (Smith 1986).

5. Conclusions

We have measured the apparent orbit of the companion of
ζ Orionis Aa discovered by Hummel et al. (2000) over its seven-
year period, and determined the orbital elements. To determine a
dynamical mass of the components, we analyzed archival spec-
tra to measure the RV. We determined a dynamical mass estimate
(14 M�) for the O-type supergiant component Aa, for which any
history of mass exchange was excluded owing to the distance of
the companion (minimum of 9.5 AU). The orbital parallax, how-
ever, indicates a distance (294 pc) of the system from Earth that
is shorter than our photometric distance estimate (387 pc) based
on the spectral type (B0III) of one of the components. Adopting
the photometric distance, the mass of the supergiant would in-
crease to 33 M�, closer to expectations based on stellar models.
The RVs were based on the shifts in the He ii (4542) line of the
primary and the O ii (4943) line of the secondary. Considering
the low-velocity semi-amplitude and the paucity of suitable pho-
tospheric lines that can be ascribed to just one of the components
(our data do not allow disentangling), we conclude that physi-
cal processes affecting line properties such as stellar winds may
have led to small systematic RV errors.
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